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Abstract. Segmentation of 3D medical images is a labor-intensive task
with important clinical applications. Recently, foundation models for im-
age segmentation have received significant interest. Specifically, many
works have proposed methods for the adaptation of promptable natu-
ral image foundation models to medical image segmentation. However,
the shift to 3D volumes from 2D natural images has proven difficult,
and many approaches have limited real-world clinical applicability due
to large model sizes and corresponding heavy computational require-
ments. Here, we present an original model for generalized, promptable 3D
medical image segmentation. Our approach leverages a lightweight con-
volutional backbone while simultaneously integrating information from
single-point prompts at multiple spatial resolutions. Our approach dra-
matically reduces the computational burden for promptable segmenta-
tion while also outperforming similar recent works on a diverse dataset
of 98,699 image-mask pairs from CT and MRI datasets.
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1 Introduction

Medical image segmentation is an important task for the diagnosis, treatment,
and management of human diseases. Automated delineation of abnormalities
can prevent missed diagnoses and enable early detection of pathology. Interven-
tional treatments including radiotherapy for malignancies rely heavily on accu-
rate healthy organ segmentation in order to minimize damage to non-targeted
structures. Finally, longitudinal contouring of pathologies can inform treatment
decisions based on changes in disease presentation. However, manual segmenta-
tion of 3D medical images is a labor-intensive process in routine clinical work-
flows. While recent foundation models have been presented for generalized seg-
mentation of both natural and medical images, the massive models proposed
are difficult to train, finetune, or use in low-resource settings including for in-
dividual hospitals or clinics. This is particularly salient when many foundation
models trained on natural images must be finetuned or completely re-trained
from scratch on medical imaging datasets in order to overcome the large domain
shift from natural to medical imaging. Inspired by the Segment Anything Model
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(SAM) [9] created by Meta AI for natural image segmentation, we propose a
lightweight, CNN-based architecture for promptable segmentation of 3D medi-
cal images. Our approach is adaptable to multiple anatomical sites and imaging
modalities while requiring significantly fewer computational resources and out-
performing recently proposed Vision Transformer [5] (ViT)-based methods.

SAM is among the most widely used foundation models for segmentation of
natural images and can leverage a single-point prompt as input. However, it has
been observed that the original implementation of SAM has difficulty general-
izing to medical imaging tasks [11]. As a result, multiple strategies have been
proposed to adapt SAM to medical images with varying success [4,10,14,13]. Cur-
rently, most of these works have focused primarily on 2D image segmentation
[4,10], with 3D volumes being segmented on a slice-by-slice basis. This approach
is generally ineffective at producing high-fidelity segmentations with spatial con-
sistency across slices, and also requires modeling every individual image slice
with associated high-computation costs and a need for per-slice prompts. SAM-
Med3D [14] attempted to address these problems by training a SAM model
using 3D ViT blocks on a large dataset of 131,000 mask-image pairs, thereby
natively accommodating 3D inputs with a 3D architecture. However, the 100
million trainable parameters in the model make it difficult to finetune and re-
sult in relatively slow inference times. FastSAM3D [13] was proposed to reduce
this computational burden through a knowledge distillation process in which a
lightweight TinyViT architecture was trained as a student model with SAM-
Med3D as a teacher. Additionally, FastSAM3D incorporated 3D sparse flash
attention to further improve model efficiency. While FastSAM3D was able to
effectively reduce the number of trainable parameters required for promptable
segmentation to 53 million, the model is still large enough to be potentially
prohibitive for hospitals and clinics with low computational resources. Further,
both SAM-Med3D and FastSAM3D perform relatively poorly in the one-point
prompt segmentation setting.

We focus here primarily on the single-point prompt segmentation task for
the following reasons. First, in busy clinical settings, point annotation of only
one slice in a 3D volume is more efficient and practical than requiring multiple
annotations. Second, many previous implementations of multiple-point prompt-
ing are ambiguous, and may not be a realistic reflection of presumed real-world
usage. For instance, in some implementations, each point beyond the first is
chosen only within the false-negative region, implying a gradual and interactive
refinement of model outputs in inference. This can prohibitively increase infer-
ence times due to repetitive modeling of a single image and requires significantly
more human resources compared to single-point prompting.

In this work, we propose a lightweight model inspired by SAM and UNet
(SAMU) for promptable 3D medical image segmentation. Our approach is mo-
tivated by a need for a computationally inexpensive model for one-point volu-
metric segmentation and is trained and evaluated on a large dataset of 98,699
image-mask pairs (N=2,703 subjects) spanning CT and MRI modalities. Our
approach is comprised of the following contributions:
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1. SAMU enables 3D medical image segmentation with significantly fewer pa-
rameters than other 3D approaches.

2. SAMU incorporates multi-scale prompt encoding to more thoroughly exploit
positional information from single-point prompts.

3. SAMU outperforms previously published baselines on a diverse dataset of
>90,000 mask-image pairs.

Fig. 1. SAMU Architecture. Shown is the proposed architecture for our promptable
segmentation framework. SAMU leverages a UNet backbone for image encoding and
mask decoding. The prompt encoding module from SAM is utilized to generate fea-
ture representations of single-point prompts. Cross-attention is performed at multiple
spatial resolutions for prompt supervision of mask decoding.

2 Methodology

We first describe the promptable segmentation framework popularized by SAM.
We then elaborate upon our proposed architecture and highlight key innovations.
An overview of our approach is presented in Figure 1.

2.1 SAM Overview

SAM is composed of an image encoder, a prompt encoder, and a mask decoder.
The image encoder is a ViT-H model pre-trained via a masked auto-encoder
strategy [7,16] that leverages sequential attention and multi-layer perceptron
blocks to extract image representations for the segmentation task. The origi-
nal SAM prompt encoder flexibly allows point, bounding box, mask, and text
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prompts. For point prompts, a learned representation is created by concatenat-
ing a positional encoding vector with learnable tokens for segmentation. The
mask decoder performs cross-attention between prompt and image embeddings
before upsampling image embeddings to an output mask prediction.

2.2 Proposed SAMU

SAMU Encoder-Decoder Backbone Unlike SAM, SAMU integrates both
image encoder and mask decoder into a single UNet-like architecture. Specifi-
cally, for the encoding branch, SAMU utilizes 3D convolutions combined with
max-pooling operations for feature downscaling. In the decoder branch, 3D trans-
posed convolutions are used to recover the spatial dimensions of the input. Fur-
ther, skip connections between corresponding spatial dimensions in the encoder
and decoder branches of SAMU are implemented. This architecture allows the
network to leverage the multi-scale feature information present at different spa-
tial resolutions, a capability demonstrated to be significant in other medical
imaging applications of UNet. Further, this framework is significantly less com-
putationally expensive when compared to ViT encoders.

SAMU One-Point Prompt Encoding For each volumetric 3D medical im-
age studied, a single-point prompt is encoded into a positional embedding with
concatenated learnable tokens as described in SAM. We discard the bounding
box, mask, and text prompt encoding modules of SAM. Each learned prompt
representation is incorporated into the decoder branch of SAMU at multiple
resolutions. Specifically, at each spatial resolution in the UNet decoder, cross-
attention is performed between the prompt feature vector and the image em-
bedding. To align the dimensions of the prompt feature vector with the channel
dimension of each image embedding, 1D convolutions are performed. Therefore,
the prompt feature vector pn is of B × Cn dimensionality where B is the batch
size and Cn is the number of channels of the image representation rn at the
nth level of the UNet backbone. As a result of these steps, important localizing
information present in the single-point prompts is provided to the network at
multiple spatial resolutions, ensuring that the model can adequately learn which
regions to segment during inference.

3 Experiments and Results

3.1 Datasets and Implementation

We studied one-point segmentation of a variety of anatomical and pathological
targets of interest. For each volumetric medical image, a single-point prompt
was randomly chosen within the entire 3D ground truth of each target volumet-
ric mask. 15 abdominal organs from the AMOS [8] abdominal CT/MRI dataset
(N=360), 3 tumor regions from the Brain Tumor Segmentation 2021 (BraTS)
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[1,12,2] dataset (N=1,251), and 117 anatomical structures from the Total Seg-
mentator (TotalSeg) [15] dataset (N=1,092) were studied. Data partitioning was
performed in the same manner as in SAM-Med3D [14] and FastSAM3D [13] for
fair comparisons. The official training split for AMOS was further randomly di-
vided for training and validation while the official validation split was used for
testing. The training split of BraTS was randomly divided into training, valida-
tion, and testing splits at a 70/10/20 ratio. Individual MRI sequences in BraTS
were treated as independent samples, but all images for a given patient could
only appear in one of the train, validation, or test splits in order to avoid data
leakage. Training, validation, and testing splits were used as described by the
Total Segmentator dataset. A single instance of SAMU was trained concurrently
on all three training datasets and evaluated on all three test datasets; individual
models were not independently trained for each dataset and modality. Prior to
image input, each volume was z-score normalized and cropped to a 128x128x128
voxel patch as described in SAM-Med3D [14] and FastSAM3D [13]. Random
flipping was used for data augmentation. The Dice score metric was used to
compare segmentation quality.

All models were trained on the same single NVIDIA RTX 6000 Ada Gen-
eration GPU. SAMU was trained with a batch size of 16 and optimized with
AdamW with a learning rate of 0.001. Pre-trained weights for Med-SAM3D and
FastSAM3D were obtained from their respective authors.

Table 1. Dice Scores of Segmentation Results

AMOS BraTS TotalSeg

2D
SAM [9] 0.049 0.108 0.202
SAM-Med2D [4] 0.097 0.013 0.008
MedSAM [10] 0.004 0.008 0.006

3D SAM-Med3D [14] 0.453 0.365 0.334
FastSAM3D [13] 0.307 0.315 0.242
SAMU (ours) 0.677 0.434 0.756

3.2 Segmentation Results

Table 1 displays Dice scores results for SAMU as well as 2D and 3D baselines
across all datasets studied when using a single-point prompt. Note that 2D re-
sults are directly reported in [13]; we were unable to replicate each 2D approach
due to limited resources. Furthermore, each 2D method required slice-by-slice
rather than full volume inference, therefore also requiring a single-point prompt
per slice rather than a single-point prompt per image volume. Despite this advan-
tage, SAMU and other 3D approaches still outperform their 2D counterparts on
medical imaging datasets. Furthermore, SAMU outperforms SAM-Med3D and
FastSAM3D in the single-point prompt evaluation schema across all datasets.



6 J. Bae et al.

Qualitative results from SAM, SAM-Med3D, FastSAM3D, and SAMU are
presented in Figure 2. The original SAM model was frequently unable to achieve
satisfactory performance on medical imaging tasks. Additionally, SAM-Med3D
and FastSAM3D seem to heavily rely on prompt location and do not always
produce quality segmentations conforming to anatomical structures. In contrast,
SAMU produces segmentations that more accurately delineate targets of interest.
Note that the same single-point prompt was provided to each model studied.

Table 2. Dice Scores for Ablation Studies

AMOS BraTS TotalSeg
Baseline 1 0.586 0.358 0.694
Baseline 2 0.643 0.378 0.733
Baseline 3 0.628 0.400 0.676
SAMU (ours) 0.677 0.434 0.756

3.3 Ablation Experiments

To evaluate the impact of different components of SAMU, we compared model
performance to that of a variant with no prompt provided (Baseline 1), a ver-
sion of SAMU in which prompt cross-attention is only performed at the bot-
tom layer of the UNet architecture (Baseline 2), and a SAMU variant in which
cross-attention is applied to both image embeddings and skip-connected resid-
ual feature maps (Baseline 3). The results are shown in Table 2. As might be
expected, the addition of prompts (Baselines 2 and 3, SAMU) improves model
performance. Further, the absence of multi-scale prompt information seems to
heavily reduce performance (Baseline 2 vs. SAMU), as does cross attention be-
tween prompts and residual features (Baseline 3 vs. SAMU).

3.4 Computational Requirements

Table 3 displays the resource requirements of SAMU when compared with SAM,
SAM-Med3D, and FastSAM3D. In addition to using substantially fewer param-
eters, SAMU is faster in inference. It should be noted that 3D models are signif-
icantly faster for 3D medical imaging inference as 2D SAM approaches require
per-slice inference along with input of per-slice single-point prompts rather than
per-volume prompts.

4 Discussion and Conclusion

Here we present SAMU, a lightweight promptable architecture for medical im-
age segmentation. SAMU builds upon medical SAM models for 3D image seg-
mentation while remaining accessible to users without powerful computational
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Table 3. Computational Requirements

Params Inference Time (s)
SAM [9] 636M 52.521
SAM-Med3D [14] 100M 1.188
FASTSAM3D [13] 53M 0.280
SAMU (ours) 12M 0.049

resources. One clinical scenario with clear potential applications for promptable
segmentation is in the field of radiation oncology, where physician annotation
of anatomical structures is a labor-intensive, but necessary task [3]. One-point
prompting for 3D segmentation in this context would save human resources while
enabling improved patient care. SAMU outperforms previous methods on mul-
tiple diverse 3D medical image datasets. In addition to reducing computational
requirements by utilizing a convolution UNet backbone, SAMU more completely
leverages single-point prompt information by incorporating prompt features at
multiple spatial resolutions in the decoder branch of the network. This may pro-
vide a stronger supervision signal than the prompt attention method used in
other SAM architectures.

One limitation of our work is an inability to fully replicate the large-scale
training datasets used by SAM-Med3D as the full data has not been made pub-
licly available at this time. However, for the three datasets studied in this work,
the authors of SAM-Med3D and FastSAM3D have confirmed previously that
the same data splits were used for their model training and evaluation, thereby
allowing a fair comparison of model performance. Further, while improved when
compared to other baselines, SAMU still does not achieve outstanding segmenta-
tion performance. This may be due to the great heterogeneity in modalities and
structures present in the training and evaluation data. Nevertheless, SAMU’s
ability to produce reasonable segmentations on diverse CT and MRI images for
a wide range of targets reflects a promising generalizability as an efficient medical
imaging foundation model. Due to its relatively low computational cost, SAMU
is particularly well-suited to future study in meta-learning [6] frameworks which
might improve model generalization to the heterogenous datasets prevalent in
the medical domain. We believe SAMU represents an important contribution to
3D medical imaging segmentation which may allow for improvements in clinical
workflows.
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Fig. 2. Qualitative Results. Shown are example segmentations for the studied ap-
proaches. Single-point prompts were identically chosen for each method (green star).
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